The check matrix of a [70,57,7]4.

For more information see New code parameters from Reed-Solomon subfield codes.

1000000000000323102211120230122030332100120020012130203330332332302020
0100000000000233131020021132320122203230321011032212112002203303200231
0010000000000101030112011232022303322203221132122310120201322132112021
0001000000000301311021233330332003033130210131201112231023233312332120
0000100000000321323132111120103033002003113031133232000101022230111212
0000010000000032132313211112010303300200311303113323200010102223211133
0000001000000121130221332230011321232100222103330203011000112020233102
0000000100000012113022133223001132123210022210333020301100011202022031
0000000010000310003332221131230320113031130203020021213113300021011302
0000000001000202131313203021203110212133232031330210033313133301121312
0000000000100213322111301230200233222023002212101233111333110033202130
0000000000010103011201123202230332220322113212231012020132213201032201
0000000000001223230100133212103111021202130330211313310011022023133223

The prime polynomial used to generate GF(4) is: X2+X+1. The element f=aX+b, a,b in {0,1}, is written as the number a*2+b.


| Some codes | home |